

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Events in Enketo Core

inputupdate

Fired on a form control when it is programmatically updated and when this results in a change in value

valuechange

Fired on a form control when it is updated directly by the user and when this results in a change in value

invalidated

Fired on a form control when it has failed constraint, datatype, or required validation.

dataupdate

Fired on model.$events, when a single model value has changed its value, a repeat is added, or a node is removed. It passes an “update object”. This event is propagated for external use by firing it on the form.or element as well.

addrepeat

Fired on newly added repeat.

removerepeat

Fired on the repeat or repeat element immediately following a removed repeat.

removed

Fired on model.$events, when a node is removed. It passes an “update object”. This event is propagated for external use by firing it on the form.or element as well.

gotohidden.enketo

Fired on form control when an attempt is made to ‘go to’ this field but it is hidden from view because it is irrelevant.

pageflip

Fired when user flips to a new page, on the page element itself.

edited

Fired on form.or element when user makes first edit in form. Fires only once.

validationcomplete

Fired on form.or element when validation completes.

Widgets in Enketo Core

Widgets extend the Widget class. This is an example:

(see full functioning example at /src/widget/example/my-widget.js

import Widget from '../../js/widget';

/*
 * Make sure to give the widget a unique widget class name and extend Widget.
 */
class MyWidget extends Widget {

 /*
 * The selector that determines on which form control the widget is instantiated.
 * Make sure that any other widgets that target the same from control are not interfering with this widget by disabling
 * the other widget or making them complementary.
 * This function is always required.
 */
 static get selector() {
 return '.or-appearance-my-widget input[type="number"]';
 }

 /*
 * Initialize the widget that has been instantiated using the Widget (super) constructor.
 * The _init function is called by that super constructor unless that constructor is overridden.
 * This function is always required.
 */
 _init() {
 // Hide the original input
 this.element.classList.add('hide');

 // Create the widget's DOM fragment.
 const fragment = document.createRange().createContextualFragment(
 `<div class="widget">
 <input class="ignore" type="range" min="0" max="100" step="1"/>
 <div>`
);
 fragment.querySelector('.widget').appendChild(this.resetButtonHtml);

 // Only when the new DOM has been fully created as a HTML fragment, we append it.
 this.element.after(fragment);

 const widget = this.element.parentElement.querySelector('.widget');
 this.range = widget.querySelector('input');

 // Set the current loaded value into the widget
 this.value = this.originalInputValue;

 // Set event handlers for the widget
 this.range.addEventListener('change', this._change.bind(this));
 widget.querySelector('.btn-reset').addEventListener('click', this._reset.bind(this));

 // This widget initializes synchronously so we don't return anything.
 // If the widget initializes asynchronously return a promise that resolves to `this`.
 }

 _reset() {
 this.value = '';
 this.originalInputValue = '';
 this.element.classList.add('empty');
 }

 _change(ev) {
 // propagate value changes to original input and make sure a change event is fired
 this.originalInputValue = ev.target.value;
 this.element.classList.remove('empty');
 }

 /*
 * Disallow user input into widget by making it readonly.
 */
 disable() {
 this.range.disabled = true;
 }

 /*
 * Performs opposite action of disable() function.
 */
 enable() {
 this.range.disabled = false;
 }

 /*
 * Update the language, list of options and value of the widget.
 */
 update() {
 this.value = this.originalInputValue;
 }

 /*
 * Obtain the current value from the widget. Usually required.
 */
 get value() {
 return this.element.classList.contains('empty') ? '' : this.range.value;
 }

 /*
 * Set a value in the widget. Usually required.
 */
 set value(value) {
 this.range.value = value;
 }

}

export default MyWidget;

Some of the tests are common to all widgets, and can be run with a few lines:

(see full functioning example at /test/spec/widget.example.spec.js)

import ExampleWidget from '../../src/widget/example/my-widget';
import { runAllCommonWidgetTests } from '../helpers/testWidget';

const FORM =
 `<label class="question or-appearance-my-widget">
 <input type="number" name="/data/node">
 </label>`;
const VALUE = '2';

runAllCommonWidgetTests(ExampleWidget, FORM, VALUE);

DO

	use the rank widget as a more complex example that uses the best practices (some other widgets use an older style)

	add an _init function to your widget that either returns nothing or a Promise (if it initializes asynchronously)

	include a widget.my-widget.spec.js file in the /test folder

	run at least the standardized common widget tests by doing: TBD

	make the widget responsive up to a minimum window width of 320px

	ensure the widget’s scss and js file is/are loaded in widgets.js and _widgets.scss respectively

	if hiding the original input element, it needs to load the default value this.originalInputValue into the widget

	if hiding the original input element, keep its value syncronized using this.originalInputValue = ...

	if hiding the original input element, it needs to listen for the applyfocus event on the original input and focus the widget

	if hiding the original input element, the widget value needs to update when the original input updates due to a calculation or becoming irrelevant (update)

	apply the widget css class to the top level elements it adds to the DOM (but not to their children)

	new input/select/textarea elements inside widgets should have the ignore class to isolate them from the Enketo form engine

	include enable(), disable() and update() method overrides. See the Widget class.

	if the widget needs tweaks or needs to be disabled for mobile use, use support.js to detect this and override the static condition() function in Widget.js.

	allow clearing of the original input (i.e. setting value to ‘’)

	if the widget does not get automatic (built-in HTML) focus, trigger a fakefocus event to the original input when the widget gets focus (rarely required, but see rank widget)

DON’T

	do not include jQuery, React, Vue or any other general purpose libraries or frameworks

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

